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ABSTRACT

Bifunctional protein can be used as a drug target as it proves a classical difference between the host and parasite
structures that can be used as a drug target. In this study, the metabolic pathways of deoxyuridine 5-monophosphate
(dUMP) were compared in camel and the blood parasite Trypanosoma evansi. T. evansi shares similar profile with
camel pathways but with predicted inability to degrade dUMP to uridine and devoid of dCTP deamination to yield
dUMP. In the enzyme set of dUMP metabolism, thymidylate synthase was raised as a bifunctional enzyme in T. evansi
with dihydrofolate reductase-thymidylate synthase (DHFR-TS) domains content, compared to a single TS domain
in camels enzyme. Specific targeting of DHFR-TS in T. evansi is expected to yield specific anti-trypanosomal drugs.
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Computational techniques have largely
enhanced drug discovery process by target
identification and validation. It had been used
to provide valuable knowledge about molecular
targets in pathogens (Alnazawi et al, 2017; Kandeel
et al, 2019a; Kandeel et al, 2019 in press; Kandeel et al,
2019b; Mahmoud et al, 2019). This process depends
on comparison of genome sequences of the host and
its pathogens. The sequence of camel genome was
recently published (Jirimutu et al, 2012). This will
give a new era in camel related research by defining
the host spots in genome and proteome of camel and
its pathogens against which drugs can be designed.
Recently, we provided some interesting differences in
the metabolic pathways of pyrimidines in camel and
T. evansi (Kandeel and Al-Taher, 2020a; Kandeel and
Al-Taher, 2020b; Kandeel et al, 2020).

In this study, enzymes of dUMP metabolism
were compared in camels and the blood protozoan, T.
evansi. In this respect, the KEGG maps were used to
set up the enzymes set (Kanehisa et al, 2007; Kanehisa
et al, 2016; Ogata et al, 1998). The bioinformatics
tools were used to assess the standard enzymes in
camel and T. evansi. Finally, differences in metabolic
enzymes were highlighted and evaluated for
vulnerability to be a drug target.

Materials and Methods

Retrieval of genomic data

Collection of genomic data was carried out by
extracting the information from the gene database
(http:/ /www.genedb.org) (Hertz-Fowler et al, 2004),
Kinetoplastom genome resources (http:/ /tritrypdb.
org/tritrypdb/), protein and genome databases at
(http:/ /www.ncbinlm.nih.gov) and the Arabian camel
genome project (http:/ /www.camel kacst.edu.sa).

Searching homologues Protein sequence
homologues were searched using the NCBI BLAST
(Basic Local Alignment Search Tool) (Madden, 2013)
or PSI-BLAST (Position- Specific Iterated-BLAST)
servers (http://blast.ncbi.nlm.nih.gov/Blast.cgi)
searching against the non redundant (nr) database,
with filtering of low complexity regions.

Multiple sequence alignment programme for
proteins and construction of phylogenetic tree was
carried out using the tools available at (https://
www.ebi.ac.uk/Tools/msa/clustalo/) (Sievers and
Higgins, 2014). Multiple sequence alignment program
(ClustalW?2) was used to calculate the best match of
the selected sequences. The resultant alignment was
used to generate a phylogenic tree, which is visualised
by Dendroscope phylogenic tree viewer (Huson et al,
2007) or CLC genomics workbench (Sequencing, 2011).
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Putative domains were searched by the domain
prediction programme available at (http://www.ncbi.
nlm.nih.gov/Structure/cdd/cdd.shtml) (Marchler-
Bauer et al, 2005). The genomic and molecular
information was obtained from Kyoto Encyclopedia of
Genes and Genomes (http:/ /www.genome.jp/kegg/).

Proteomic and genomic tools ExPASy
Proteomics tools (http://us.expasy.org/tools/)
(Gasteiger et al, 2003) and tools available at the website
of the European Bioinformatics Institute (http://
www.ebi.ac.uk/Tools/) (Labarga et al, 2007) was also
used for analysis of nucleotide and gene sequences.
The protein parameters including the molecular
weight, theoretical pl, amino acid composition, atomic
composition, extinction coefficient, estimated half-life,
instability index, aliphatic index and grand average of
hydropathicity was searched at (http:/ / us.expasy.org/
tools/ protparam.html). Protein sequences of target
genes was analysed for data such as pl, extinction
coefficient and MW for the tagged protein sequence
by PROTParam. PROSITE (http:/ /www.expasy.org/
proteomics/families__patterns_and_profiles) was
used to search for patterns and profiles in the protein
sequences of the target genes. The protein domains,
families and functional sites was searched at (http://
prosite.expasy.org/).

Results and Discussion

Deoxyuridine-5-monophosphate (dUMP)
production process was proposed by 4 routes 1)
dephosphorylation of deoxyuridine 5'-triphosphate by
dUTP pyrophosphatase, 2) the dephosphorylation of
deoxyuridine-5'-diphosphate by the actions of dTMP
kinase 3) from deoxyuridine by the kinase activity of
thymidine kinase 4) from dCTP by dCTP deaminase as
shown in (Fig 1). In the catabolic direction, deoxyuridine
was produced from dUMP by 5-nucleotidase or
5-deoxynucleotidase (Fig 1). In camel, the previous
profile applied except for the absence of dCTP
deamination to yield dUMP (Fig 2). T. evansi was found
to be devoid of dCTP deamination and 5 -nucleotidase
(Fig 3). Thus, dUMP was not converted to deoxyuridine.
The summary of all enzymes in deoxyuridine pathways
and the predicted enzymes in camels and T. evansi are
provided in Tables 1-3.

Thymidylate synthase

Thymidylate synthase (EC 2.1.1.45; dTMP
synthase), is a methyltransferase enzyme also called
thymidylate synthetase; methylenetetrahydrofolate:
dUMP C-methyltransferase; TMP synthetase. It acts
on one-carbon moieties, as it catalyses methylation of
dUMP with 5, 10-methylenetetrahydrofolate (methy]l
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donor), creating dTMP and dihydrofolate (Slavik
and Slavikova, 1980). Parasites, Crithidia fasciculata,
Crithidia oncopelti, and a number of trypanosomatids
(Trypanosoma brucei, Trypanosoma congolense,
Trypanosoma lewisi and Trypanosoma cruzi) were able
to synthesise several thymidylate synthases (TS). The
trypanosotamid enzyme was inactivated by Mg?*, was
extensively more sensitive to mercaptoethanol, had
elevated noticeable Km values for substrate (dUMP)
and cofactor (tetrahydrofolate), had a greater obvious
molecular weight and was significantly more sensitive
to inhibition by suramin. Therefore, it is a promising
target for chemotherapeutic agents, either on its own
or in combination with a dihydrofolate reductase
inhibitor (Chalabi and Gutteridge, 1977). Additionally,
potency of inhibitory effects of antifolate drugs on
targeted dual functionally dihydrofolate reductase-
thymidylate synthase (DHFR-TS) that isolated from
African trypanosomes, protozoan parasite causing
both sleeping sickness in humans and nagana in cattle
has been estimated. Thus, the most effective inhibitors
for DHFR were methotrexate and trimetrexate, and for

Table 1. Enzymes involved in metabolic pathways of dUMP.

ID (E.C. number) | Definition (Enzyme name)

27121 thymidine kinase

3.1.3.89 5’-deoxynucleotidase

3.1.3.5 5 -nucleotidase

3.5.4.30 dCTP deaminase (dUMP-forming)

3.6.1.23 dUTP diphosphatase; deoxyuridine-
triphosphatase

2749 dTMP kinase; thymidine
monophosphate kinase

2.1.1.45 thymidylate synthase; dTMP synthase

Table 2. The expected enzymes involved in metabolic pathways
of dUMP in camels.

ID (E.C. number) | Definition (Enzyme name)

2.71.21 thymidine kinase

3135 5-nucleotidase

3.6.1.23 dUTP diphosphatase; deoxyuridine-
triphosphatase

2.1.1.45 thymidylate synthase; dTMP synthase

Table 3. The expected enzymes involved in metabolic pathways
of dUMP in Trypanosoma brucei.

ID (E.C. number)

Definition (Enzyme name)

27121 thymidine kinase

3.6.1.23 dUTP diphosphatase; deoxyuridine-
triphosphatase

2.1.1.45 thymidylate synthase; dTMP synthase

2749 dTMP kinase; thymidine monophosphate

kinase
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thymidylate synthase were FdAUMP
and nolatrexed (Gibson et al, 2016).

Human and camel TS showed
77% similarity and 72 differences
(Fig 4). This difference was attributed
to the lack of 60 amino acids at the
N-terminal of camel TS. In comparing
the camel species, the dromedary and
bactrian camels were 99.21% similar,
while the similarity rate drops to 74.05
and 73.42% in comparing dromedary
and bactrian camel with the feral
camel. This was due to the lack of
58 amino acids at the N-terminal of
dromedary and bactrian camels (Fig
5). Comparison of camel and T. evansi
TS is provided in Fig 6. The camel
protein was 253 amino acids, while
the T. evansi TS is 527 amino acids in
length forming 29.98% similarity and
369 differences. Motif and domain
search using MotifFinder revealed the
bifunctional dihydrofolate reductase-
thymidylate synthase (DHFR-TS)
was encoded by the T. evansi protein,
while the camel enzyme encodes one
thymidylate kinase domain (Fig 7).

The heat map of multiple
comparison of TS sequences in
several species showed 68.9-94.27%
similarities among the selected
vertebrates TS. Comparisons with
protozoal and prokaryotes TS revealed
low similarity rate in the range of 12-
33.69% (Fig 8). The phylogenetics of
camel and T. evansi TS is shown in (Fig
9). The T. evansi TS was related to the
protozoal enzyme and highly related
to the prokaryotic TS. The camel TS
was related to the monofunctional
eukaryotic thymidylate synthases.

The bifunctional DHFR-TS
had been regarded as a promising
antiprotozoal and anti-trypanosomal
target (Gibson et al, 2016; Panecka-
Hofman et al, 2017; Schormann et al,
2010; Senkovich et al, 2009; Valente et
al, 2019). The present finding which
highlights the differences between
camel and T. evansi TS suggests using
it as a drug target.

Molecular models of camel
and human TS were requested from
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Fig 8. Multiple sequence alignment of camel, Trypanosoma evansi, prokaryotes and eukaryotes thymidylate synthase. The upper panel
represents sequence comparison statistics. The upper right diagonal region is explains the number of differences between
two sequences, while the lower left diagonal region explains the per cent of identity between two sequences.

the Swiss-Model website (Waterhouse et al, 2018).
The camel TS sequence was submitted to Swiss
Model to predict its structure by automated model
building tool. The website predicted the 3D camel
structure based on the 3h9%k pdf file which contains a
homodimer of human TS. The best model was based
on human TS with 100% sequence coverage and 61 %
similarity (Fig 10). The model of T. evansi TS showed
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the highest similarity with the bifunctional DHFR-TS.
The highest similarity was with the structure of T.
cruzei DHFR-TS (PDB ID 3irm) with coverage of 98%
and similarity rate 0.52.

The bifunctional DHFR-TS in T. evansi is distinct
from the camel enzyme. The structure and functional
differences could put the enzyme as a hopeful target
to develop specific drugs.
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